TT-2000&D2000 Ticket Eater™ with AP-100 Logic Board
Table of Contents

Initial Setup... 3
Handling Messages on the Door Display ... 4
DL Ticket Eater Manager Software ... 5
Changing Options without Software ... 7
Performing Functions without Software ... 11
Maintenance Checklist ... 12
Blade Adjustment & Replacement ... 15
Printers and Loading Paper ... 17
Ticket Specifications .. 19
Diagnostic LEDs ... 20
Trouble-Shooting... 21
Mechanical Drawings.. 23
Sensor Boards ... 30
Electrical Schematics.. 33
Warranty Information .. 41

NOTE: TICKET EATER™ MANAGER SOFTWARE IS SOLD SEPARATELY.

PLEASE CALL 215-997-8616 TO ORDER.
Initial Setup

This manual is for the TT-2000 Ticket Eater™ with an AP-100 logic board. Do not use this manual if you have an earlier version logic board. Earlier version boards lack a USB connector and are not labeled “AP100”.

As part of the initial setup there are several options in the Ticket Eater logic board that must be configured for your situation. These settings can be made with the DL Manager software or by using buttons inside the Ticket Eater. Later sections in this manual explain both methods.

The initial options that you must set are:

1. Printer Model. Refer to appendix A for more information on the printers. When using the buttons, this is option 17 in group 99 1.

2. If your sensor board is Rev. 1 to 4 then set the Rev to 4; otherwise set it to 5. Refer to appendix C for more information on the sensor boards. When using the buttons, this is option 31 in group 99 3.

3. The Barcoded / Holes-Only option must agree with your tickets and sensor board. If this setting is wrong the Ticket Eater will not count correctly. When using the buttons, this is option 30 in group 99 3.

4. If you are using barcoded tickets the Ticket Eater must learn the barcode pattern on the tickets. When using the buttons, use the options in group 99 4.

5. Receipt message (DL Manager software is required to change the message).

Switching Door Displays

The control signals for the 4 digit and 5 digit seven segment door displays are different than the control signals for the dot matrix door display. Since the normal procedures for changing options use the door display there is a special procedure for changing between the dot matrix and the seven segment displays.

1. Start with the power off.

2. Press and hold the SW1 button on the logic board and the red button in front of the logic board.

3. While holding the buttons turn the machine on.

4. Release SW1 and the red button. If the logic board was previously set for a dot matrix display it will now be set for a 5 digit display. If it was previously set for a 4 or 5 digit display it will now be set for a dot matrix display.

If you have a 4 digit display, first use this procedure to get the logic board into a 5 digit display mode. At this point you will be able to see the display. Then use the procedures explained in the chapter on Changing Options Without Software to change option 36 to 4.
Handling Messages on the Door Display

There are four messages that can appear on the display on the door. DL Manager software can change the wording of these messages. Card swipe equipped systems may have additional messages.

1. **Print**

 This is a normal informational message.

2. **Printer Error**

 Typical causes of this error are out of paper, printer turned off, paper improperly loaded, printer is off-line (does not apply to all printers), and a defective printer.

3. **Call For Help**

 This message is usually caused by tickets stuck in the transport mechanism. After fixing the problem, clear the error by pressing the red button or by turning the ticket eater off and back on.

4. **Bin Full**

 This message means that the trash can needs emptied. If your Ticket Eater has a full-bucket sensor then emptying the trash can clears the error. In machines without a full-bucket sensor the message is triggered by the number of tickets that have been processed. Press the red button to clear the error and reset the count.

 Option 25 in group 99 2 tells the ticket eater to use a full-bucket sensor. Option 26 in group 99 2 sets the capacity of the trash can.

 If you set option 26 to zero and you are not using a full bucket sensor, it will disable the “Bin Full” message.

 If you empty the trash can before the full count is reached, reset the bucket count with Function Mode 3 (see the section “Performing Functions without Software”) or with the DL Manager software.

Machines with card swipe systems may also show these messages:

1. **Full Count – Scan Card or Print**

 The maximum possible count is limited by the number of digits in the door display. When this count is reached, the Ticket Eater will stop and display this message. After the card is scanned or a receipt is printed the Ticket Eater will return to normal operation.

2. **Sending Data**

 This is a normal informational message.

3. **Data Send Error – Call for Help**

 Problems with the card swipe system or the communication between the card swipe system and the logic board will cause this message. Fix the problem and re-start the Ticket Eater.
DL Ticket Eater Manager Software

DL Ticket Eater Manager software is the preferred way to manage your TT-2000 Ticket Eater with AP-100 main logic board. This section of this manual covers that. Some management functions can also be done without the software by using buttons inside the TT-2000. The next section of this manual covers those procedures.

DL Ticket Eater Manager software requires Windows XP or later.

The software uses USB 2.0 to connect to the ticket eater. (USB 1.x is not supported.) To make this connection:

1. Open the top door of the Ticket Eater.
2. Pull out the safety switch. This turns the Ticket Eater on with the door open. The red and green LED’s on the main logic board should be on.
3. Connect a USB cable between the computer and the USB jack on the main logic board.
4. Use the software to configure and manage the Ticket Eater.

The software has various entries organized into 5 tabs (circled in black). The toolbar (circled in white) has two buttons for opening and saving configuration files, two buttons for transferring configurations between the software and the Ticket Eater, and five buttons for controlling the Ticket Eater.
A Ticket Eater configuration can exist in 3 places:

1. In a Deltronic Labs Ticket Eater
2. In a configuration file on your computer.
3. In the entry blanks of the software.

Using the software you can:

1. Transfer a configuration between the program entry blanks and a Ticket Eater.
2. Edit a configuration.
3. Save a configuration to a file and retrieve a configuration from a file.
4. Perform management functions.
5. Install updated programming in a Ticket Eater.

Transferring Configurations to and from a Ticket Eater

First, connect a USB cable as described above. Then use the commands on the Ticket Eater menu or buttons on the toolbar to transfer the configuration.

Editing a Configuration

Use the entry blanks to edit a configuration. As you move to each entry blank, instructions for that entry appear. Some entries are applicable only to certain hardware.

Save and Open Configuration Files

Use the commands on the File menu or buttons on the toolbar to save and open configuration files. These operations transfer a configuration between the file and the entry blanks.

Management Functions

Use commands on the Ticket Eater menu or buttons on the toolbar to:

1. Print a duplicate of the last receipt printed.
2. Print an audit report on the Ticket Eater’s printer.
4. Reset the audit counters.
5. Reset the bucket counter (when not using a full-bucket sensor).

Install Updated Programming

Use the Upload New Firmware command on the Firmware menu to install new programming in the ticket eater logic board. You should do this only when instructed to do so by Deltronic Labs tech support.
Changing Options Without Software

DL Ticket Eater Manager software is the preferred way to manage your TT-2000 Ticket Eater with AP-100 main logic board. The previous section of this manual covers that. Some options can also be changed without the software by using buttons inside the TT-2000. This section covers those procedures. Changing any of the words printed on the receipt can only be done with the software.

These procedures use the two buttons mounted in front of the logic board, the SW1 button on the logic board, and the 7 segment display on the door. The RUN/PRG jumper is not used. It must stay in the RUN position. Leaving the jumper in the PRG position will drain battery. To enter the options mode:

1. Open the top door of the Ticket Eater.
2. Pull out the safety switch. This turns the Ticket Eater on with the door open. The red and green LED’s on the main logic board should be on.
3. Wait for the display to finish the power-up test and enter the “Snake” mode.
4. Push the SW1 button.
5. The display will show 99 0. You are now in Options Mode.

In Options Mode the first number (99 in this case) shows the number of the option that you are working with. The second number (0 in this case) shows the option’s value. Pressing the red or black button in front of the logic board changes the option’s value. Pressing both buttons at the same time accepts the currently displayed value.

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Increase the Value</td>
</tr>
<tr>
<td>Red</td>
<td>Decrease the Value</td>
</tr>
<tr>
<td>Both</td>
<td>Accept the Value</td>
</tr>
</tbody>
</table>

The options are organized into groups. 99 is a special number which indicates that you are selecting a group of options to work with. When you select a group, the first option in that group is displayed. As you accept each option by pressing both buttons together, the next option is displayed. After the last option is accepted you are returned to 99 so that you can select another group. If you turn off the machine before you finish viewing a group, your changes to that group will be lost.

<table>
<thead>
<tr>
<th>Group 99 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option Number</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
Group 99 1

<table>
<thead>
<tr>
<th>Option Number</th>
<th>Function</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Print serial number on receipt</td>
<td>0 = No, 1 = Yes</td>
</tr>
<tr>
<td>11</td>
<td>Time format</td>
<td>0 = 24 hour, 1 = AM / PM</td>
</tr>
<tr>
<td>12</td>
<td>Receipt</td>
<td>0 = 1 copy, no barcode, 1 = 1 copy, middle barcode, 2 = 1 copy, bottom barcode, 3 = 2 copies, no barcode, 4 = 2 copies, middle barcode, 5 = 2 copies, bottom barcode</td>
</tr>
<tr>
<td>13</td>
<td>Include checksum in barcode</td>
<td>0 = No, 1 = Yes (see Note)</td>
</tr>
<tr>
<td>14</td>
<td>Print text below barcode</td>
<td>0 = No, 1 = Yes</td>
</tr>
<tr>
<td>15</td>
<td>Date format</td>
<td>0 = mm/dd/yy, 1 = dd/mm/yy</td>
</tr>
<tr>
<td>16</td>
<td>Minimum tickets to print receipt</td>
<td>1 to 9</td>
</tr>
<tr>
<td>17</td>
<td>Printer ID</td>
<td>0 = PPU-231, 1 = Star TUP-482, 2 = Custom VKP-80II</td>
</tr>
</tbody>
</table>

NOTE: Some swipe systems and some scan systems will get ticket counts that are approximately ten times too small or too large if option 13 is not set to their preference.

Group 99 2

<table>
<thead>
<tr>
<th>Option Number</th>
<th>Function</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Machine number: Thousands</td>
<td>0 to 9</td>
</tr>
<tr>
<td>21</td>
<td>Machine number: Hundreds</td>
<td>0 to 9</td>
</tr>
<tr>
<td>22</td>
<td>Machine number: Tens</td>
<td>0 to 9</td>
</tr>
<tr>
<td>23</td>
<td>Machine number: Ones</td>
<td>0 to 9</td>
</tr>
<tr>
<td>24</td>
<td>Number of digits in machine number</td>
<td>3 to 4</td>
</tr>
<tr>
<td>25</td>
<td>Full bucket sensor</td>
<td>0 = No sensor, 1 = Full and anti-cheat, 2 = Full only, 3 = Anti-cheat only</td>
</tr>
<tr>
<td>26</td>
<td>Bucket capacity (in 1000's of tickets)</td>
<td>1 to 9</td>
</tr>
</tbody>
</table>
Group 99 3

<table>
<thead>
<tr>
<th>Option Number</th>
<th>Function</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Sensor Board</td>
<td>0 = BCR-1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = HO-1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = BCR as HO (see NOTE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = DS-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = BCR-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 = HO-2000</td>
</tr>
<tr>
<td>31</td>
<td>Sensor board revision</td>
<td>4 to 5</td>
</tr>
<tr>
<td>32</td>
<td>Use sensor board cheat detection</td>
<td>0 = No, 1 = Yes</td>
</tr>
<tr>
<td>33</td>
<td>Bad barcode tolerance</td>
<td>0 = 0% (most strict)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = 25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 = 50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = 75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = 100% (rejects nothing)</td>
</tr>
<tr>
<td>34</td>
<td>Points value of Holes-Only ticket</td>
<td>1 to 99</td>
</tr>
<tr>
<td>35</td>
<td>Points value of one coin</td>
<td>0 to 99</td>
</tr>
<tr>
<td>36</td>
<td>Digits in door display</td>
<td>4, 5, 8 (see page 3)</td>
</tr>
<tr>
<td>37</td>
<td>Power Mains</td>
<td>0 = 60 Hz, 1 = 50 Hz</td>
</tr>
</tbody>
</table>

NOTE: BCR sensor boards are used to count barcoded tickets. HO sensor boards are used to count holes-only tickets. Barcode sensor boards can be used to count holes-only tickets, but there is **NO CHEAT DETECTION** when used this way. This should only be done in an emergency situation. Some barcode sensor boards can be configured by means of jumpers on the board to work as a holes-only sensor board. In this case choose HO. In this case you will have cheat detection.

Group 99 4

<table>
<thead>
<tr>
<th>Option Number</th>
<th>Function</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Points value for barcode #1</td>
<td>0 to 99</td>
</tr>
<tr>
<td>42</td>
<td>Points value for barcode #2</td>
<td>0 to 99</td>
</tr>
<tr>
<td>43</td>
<td>Points value for barcode #3</td>
<td>0 to 99</td>
</tr>
<tr>
<td>44</td>
<td>Points value for barcode #4</td>
<td>0 to 99</td>
</tr>
<tr>
<td>45</td>
<td>Points value for barcode #5</td>
<td>0 to 99</td>
</tr>
<tr>
<td>46</td>
<td>Points value for barcode #6</td>
<td>0 to 99</td>
</tr>
<tr>
<td>47</td>
<td>Points value for barcode #7</td>
<td>0 to 99</td>
</tr>
<tr>
<td>48</td>
<td>Points value for barcode #8</td>
<td>0 to 99</td>
</tr>
</tbody>
</table>

Group **99 4** sets the points value for barcoded tickets. When using barcoded tickets, the Ticket Eater accepts only tickets that have the correct barcode. To do this it must first learn the barcode pattern on the tickets. It can learn 8 different barcodes, each with its own point value.

To teach the Ticket Eater a barcode:
1. Go to one of the option numbers in group **99 4**.
2. Use the black and red buttons to adjust the point value.
3. Feed the Ticket Eater a strip of seven tickets.
4. After reading the tickets the ticket eater will display a series of numbers which represent the barcode pattern. (If these numbers are all zeros, the reading failed.)
5. To accept and record the reading, press both buttons together. To reject the reading turn off the machine without pressing both buttons.

Group 99 5 performs the special function of clearing the audit counters. When you select 99 5, the display continues to show 99 5, but it blinks. At this point you can press the red button to clear the audit counters, or the black button to cancel clearing.

Group 99 6 exits the options mode.
Performing Functions Without Software

DL Ticket Eater Manager software is the preferred way to manage your TT-2000 Ticket Eater with AP-100 main logic board. A previous section of this manual covers the software. Some management functions can also be done without the software by a special Function mode. This mode uses buttons inside the TT-2000. This section covers the Function mode.

These procedures use the two buttons mounted in front of the logic board, the SW1 button on the logic board, and the 7 segment display on the door. To enter the Function mode:

1. Open the top door of the Ticket Eater.
2. While pressing SW1, pull out the safety switch. This turns the Ticket Eater on with the door open and starts the Function mode.
3. The display will show FUNC0.
4. Use the black and red buttons to change the function number.
5. Press SW1 to select the function.

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Increase the function number</td>
</tr>
<tr>
<td>Red</td>
<td>Decrease the function number</td>
</tr>
<tr>
<td>SW1</td>
<td>Select the function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Exit the function mode</td>
</tr>
<tr>
<td>1</td>
<td>Print a duplicate receipt</td>
</tr>
<tr>
<td>2</td>
<td>Print an audit report</td>
</tr>
<tr>
<td>3</td>
<td>Reset the bucket meter</td>
</tr>
<tr>
<td>4</td>
<td>Print an options report</td>
</tr>
</tbody>
</table>

To Purchase This Item, Visit BMI Gaming | www.bmigaming.com | (800) 746-2255 | +1.561.391.7200
Maintenance Checklist

1. To avoid damaging the sensor board, remove it before releasing or removing the **Guide Assembly**.

2. When the **Guide Assembly** is released or the entire assembly is removed for servicing or cleaning, follow this procedure to replace it:

 a. The motor assembly has extra O rings installed on both the **Lower Drive Roller Shaft** and the **Motor Shaft**. Before replacing the guide assembly, make sure the O rings are not riding on the sides of the rollers. They should be next to the **Side Plates** and away from the rollers.

 ![Image of O rings and rollers]

 b. Place the **Rear Idler Roller** (the one closest to the cutter) into its slots in the side plates.

 ![Image of rear idler roller]

 c. Let the **Front Idler Roller Shaft** drop into its slots in the side plates.

 ![Image of front idler roller]

To Purchase This Item, Visit BMI Gaming | www.bmigaming.com | (800) 746-2255 | +1.561.391.7200
d. Pull the Guide Assembly slightly towards you to allow the pins to drop into their slots.

e. Push the Guide Assembly towards the cutter and away from you until it stops, and then press down firmly on the Spring Spacer Block (it has the Phillips head screws) to load the springs. The springs (black arrow) should lock the Rear Pins (white arrow) into their slots. See the mechanical drawings.

3. When replacing the Cutter, make sure that it is seated all the way down so that its gear meshes with the large gear on the Driveshaft.

4. Clean the optical sensors on the sensor board.
 a. Carefully unplug the cable from the board.
 b. Remove two thumbscrews.
 c. Lift the board straight up.
 d. Turn the board over. Carefully wipe the sensors with a soft cloth or alcohol swab.
 e. Replace the board, thumbscrews, and cable.

5. Check that the Cutter Blade is tight on its shaft. The shaft has a flat. Tighten the cutter’s set screw against the flat.

6. Check the Cutter Blade for a build-up of dirt or adhesive from the paper. Clean with an alcohol swab or solvent.
7. Check that the **Large Gear** is tight on the **Driveshaft**. The shaft has a flat. Tighten the gear’s set screw against the flat.

8. Make sure the **Chute Cover** is pushed down all the way. The **Chute Cover** presses an interlock switch located under the shelf. The switch interrupts power to motor when the **Chute Cover** is open. A bent **Chute Cover** can fail to activate the switch.

9. Keep the entire shelf area clean of dust. The optical sensors are most affected by dust build-up.

 While cleaning, **TURN OFF THE POWER**.

 Do not use a metal ended vacuum to clean any circuit board. A can of compressed air or an air compressor is recommended for cleaning circuit boards.

 After cleaning replace the covers. They are there for safety and to protect the circuit boards. Metal objects like tokens or tools dropped on the boards can cause short circuits and damage the boards.

10. Do not block the exhaust fan on the rear and the vents on the side. Allow at least 6 inches (15 cm) of clearance.

11. If you are getting a message on the display instead of a ticket count or the snake mode, refer to the section on “Handling Messages on the Door Display”.
Blade Adjustment & Replacement

Stationary Blade Adjustment

The Ticket Eater blade is adjusted at the factory. As the blade wears, adjusting it so that it is closer to the cutter will extend its life. To adjust the blade, follow these steps:

1. Make sure the **POWER IS OFF** and the cutter is not rotating.
2. Pull straight up to remove the cutter assembly from guide housing assembly
3. Set the cutter assembly on a spacer or the edge of your workbench so that you can access the blade screws and turn the flywheel.
 CAUTION: Even a dull blade is sharp enough to cut your fingers. Keep them away from the cutter and the blade.
4. Use a 7/64 inch hex wrench to loosen the socket head attachment screws that hold the stationary blade. Loosen them so that they can be turned with your bare fingers, but do not remove them.
5. Insert a 1/16 inch hex wrench through the top clearance hole of the stationary blade into the set screw.
6. Turning the set screw clockwise will move the blade closer to the cutter. Slowly spin the flywheel while turning the set screw clockwise. As the blade nears the cutter edge you will start to hear and feel the blade touch the cutter as you rotate it. If you go too far the cutter will not turn freely. Adjust both the left and right sides so that you get no contact and can see no light between the cutter and the blade.
7. Slowly tighten the screws that hold the stationary blade while rotating the cutter and checking the contact adjustment. As the screws are tightened they will pull the blade away from the cutter. Use the adjustment screws to compensate.
8. Re-install the cutter assembly in the machine. Make sure that it is seated all the way down so that its gear meshes correctly with the gear on the guide housing assembly.
Stationary Blade Replacement

The Ticket Eater blade has two edges. When one edge has worn to the point that it cannot be adjusted, it can be flipped around to use the other edge. To flip the blade or replace the blade, follow these steps:

1. Make sure the **POWER IS OFF** and the cutter is not rotating.
2. Pull straight up to remove the cutter assembly from guide housing assembly.
3. Set the cutter assembly on a spacer or the edge of your workbench so that you can access the blade screws and turn the flywheel.
 CAUTION: Even a dull blade is sharp enough to cut your fingers. Keep them away from the cutter and the blade.
4. Use a 7/64” hex wrench to remove the screws that hold the stationary blade (see photo on previous page).
5. Remove the blade, but leave the adjustment screws in place.
6. Flip the blade around to use the other edge, or use a new blade. Install the blade being careful not to get the bevel backwards. The wider side of the blade should be against the frame.
7. Follow the instructions on the previous page to adjust the blade.
Printers & Loading Paper

Star dot matrix printer

This printer is used in some older machines. The printer is mounted on the inside of the top door.

The printer control board (circled in photo) has 3 LEDs. The top LED is a green “power on” indicator. The middle LED is a red “error” indicator. It is lit when there is a problem such as out of paper.

The bottom LED is a green “on line” indicator. The printer control board has two switches. The top switch is an on-line / off-line toggle. The bottom switch feeds paper.

Citizen thermal printer

Most Ticket Eaters have this printer. The printer sits on shelf inside the cabinet. On the side of the printer are a paper-feed switch and an on/off toggle switch (circled in photo). Please refer to the printer manual for further instruction on printer care and functions. Refer to the next page for paper loading instructions.
4.3 Inserting the Paper

CAUTION:

1. Be sure to use the specified paper roll.
2. Use of non-specified paper may not guarantee the print quality, printing head life, presenter operation, and so on.
3. Do not insert a ragged or dog-eared end of the paper roll, because it could result in a paper jam or insertion error.

![Paper Rollers](image)

1. Cut the front end of the paper roll almost at a right angle.
2. Insert the paper roller of the paper holding unit into the core of the paper roll as shown in the figure on the next page.
3. Make sure the paper winding direction and put the paper roll onto the PHU.
4. Make sure that the power is turned on.
5. If there is still some paper remaining after a paper-out indication, eliminate the paper roll according to "4.4 How to Remove the Remaining Paper Roll."
6. Raise the head-up lever of the printer/presenter unit. (See the next page.)
7. Insert the front end of the paper roll straight into a paper insertion slot as shown in the figure on the next page, until the paper stops.
8. Put back the head-up lever. The paper is automatically pulled in by the platen roller to feed a constant amount of paper. (When auto-loading is enabled.) Remove the cut paper to enable printing.

CAUTION:

1. If the paper roll is still slack, rewind the paper to remove the slack.
2. If the paper roll is tilted, raise the head-up lever to correct the paper roll position, or pull out the paper roll and set it again.
3. Do not hold or press the paper roll while printing, because it could cause a paper jam.
4. After the paper is set, the printer is made ready to start printing. Note that if data is remaining in the buffer, the printer will start printing after the paper is set.

IMPORTANT PAPER WIDTH CANNOT EXCEED 3.125 in. THERMAL PAPER ONLY

NOTE IF USING PAPER WITH TICKET EATER LOGO, PAPER IS LOADED OPPOSITE OF ABOVE (FROM BOTTOM)
Ticket Specifications

The Ticket Eater is designed to count industry standard tickets. These tickets are 1 5/32" wide by 2" long. They have a 1/4" diameter hole in the middle of the ticket which is centered on the perforation between tickets. For use in ticket dispensers they will also have a 1/4" diameter half hole on each side of the ticket at the perforation.

Barcoded and Holes-Only Tickets photographed on 1/4" grid.

The barcode on barcoded tickets is 4 digits of interleaved 2 of 5 code. This gives it 14 bars and 13 spaces. Overall dimensions of the barcode are 1" long x 1/2" wide. There are 18 thin bars/spaces and 9 thick bars/spaces. Thin bars/spaces are 1/45" thick. Thick bars/spaces are 3/45" thick.

The barcode bars should be printed with a dark color (black is preferred). The ink should be dense enough that no background color shows through the bars.

The barcode must be printed on both sides of the tickets.

The barcode background color should not be a dark color such as dark brown, dark blue, dark gray, etc.

Keep the area between barcodes as clear of markings as possible. A light red sequence number is permitted. No other color is allowed.
Diagnostic LEDs

The Ticket Eater has several diagnostic LEDs:

<table>
<thead>
<tr>
<th>Location</th>
<th>Color</th>
<th>Indicates</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Board</td>
<td>Red</td>
<td>+5 V Power</td>
<td>Normally On</td>
</tr>
<tr>
<td>Logic Board</td>
<td>Green</td>
<td>+12 V Power</td>
<td>Normally On</td>
</tr>
<tr>
<td>Motor Drive Board</td>
<td>Red</td>
<td>Motor Control Signal from Logic Board</td>
<td>Motor should be on when it is on</td>
</tr>
<tr>
<td>HO-1000 Rev. 1-4 D1</td>
<td>Red</td>
<td>Ticket detected</td>
<td>Off when front sensor sees ticket</td>
</tr>
<tr>
<td>HO-1000 Rev. 1-4 D2</td>
<td>Red</td>
<td>Ticket detected</td>
<td>On when middle sensor sees ticket</td>
</tr>
<tr>
<td>HO-1000 Rev. 1-4 D3</td>
<td>Red</td>
<td>Ticket Jam if off when don't have tickets</td>
<td>Off rear sensors see ticket</td>
</tr>
<tr>
<td>BCR-1000 Rev. 1-4 Front</td>
<td>Red</td>
<td>Ticket detected</td>
<td>Off when front sensor sees ticket</td>
</tr>
<tr>
<td>BCR-1000 Rev. 1-4 Rear</td>
<td>Red</td>
<td>Ticket Jam if off when don't have tickets</td>
<td>Off when rear sensors see ticket</td>
</tr>
<tr>
<td>HO-1000 Rev. 5 LED 1</td>
<td>Red</td>
<td>Ticket detected</td>
<td>On when middle front sensor sees ticket</td>
</tr>
<tr>
<td>HO-1000 Rev. 5 LED 2</td>
<td>Red</td>
<td>Ticket detected</td>
<td>On when right rear sensor sees ticket</td>
</tr>
<tr>
<td>HO-1000 Rev. 5 LED 3</td>
<td>Red</td>
<td>Ticket detected</td>
<td>On when left rear sensor sees ticket</td>
</tr>
<tr>
<td>HO-1000 Rev. 5 LED 4</td>
<td>Red</td>
<td>Ticket detected</td>
<td>Off when front sensor sees ticket</td>
</tr>
<tr>
<td>HO-1000 Rev. 5 LED 5</td>
<td>Red</td>
<td>Cheating</td>
<td>Flashes On when error is detected</td>
</tr>
<tr>
<td>BCR-1000 Rev. 5 LED 6</td>
<td>Red</td>
<td>Ticket detected</td>
<td>Flashes On when error is detected</td>
</tr>
<tr>
<td>BCR-1000 Rev. 5 LED 2</td>
<td>Red</td>
<td>Ticket detected</td>
<td>Off when front sensor sees ticket</td>
</tr>
<tr>
<td>BCR-1000 Rev. 5 LED 3</td>
<td>Red</td>
<td>Ticket detected</td>
<td>On when middle sensor sees a bar in the barcode</td>
</tr>
<tr>
<td>BCR-1000 Rev. 5 LED 4</td>
<td>Red</td>
<td>Ticket detected</td>
<td>On when middle rear sensor sees ticket</td>
</tr>
<tr>
<td>BCR-1000 Rev. 5 LED 5</td>
<td>Red</td>
<td>Ticket detected</td>
<td>On when left rear sensor sees ticket</td>
</tr>
<tr>
<td>BCR-1000 Rev. 5 LED 6</td>
<td>Red</td>
<td>Ticket detected</td>
<td>On when right rear sensor sees ticket</td>
</tr>
</tbody>
</table>
Trouble-Shooting Flowchart

Open the top door. To power up the ticket eater, pull out the safety switch and make sure the red rocker switch is on. Are the red and green LEDs on the logic board on?

- NO
 - Check power switch, 5 A & 2.5 A SB fuses, connections to and from power supply.

- YES
 - When first powered up, does the display show 00000 to 99999 and then go into snake / attract mode?
 - NO
 - 1. Check that the RUN / PRG jumper on the AP-100PM board (the board with the battery on it) is in the RUN position.
 - 2. Try switching door displays (see page 3).
 - 3. Check the connections between the logic board, the printer, and the display.
 - 4. Check that paper is properly loaded in the printer.
 - YES
 - Insert a ticket and hold it under the front sensor. Does the LED for the front sensor turn off and the LED for the rear sensors stay on?
 - NO
 - Check the connections between the logic board and the sensor board. If the LED for the rear sensors is off, power down, remove the sensor board, and check for ticket jam or debris. You may need to remove the guide assembly to clear the debris.
 - YES
 - Note: If the ticket is held under the sensor for more than 10 seconds the system will consider it a jammed ticket and display an error message.

Does the LED on the motor drive board turn on when a ticket is inserted?

- NO
 - Check the connections between the logic board and the motor drive board.

- YES
 - Does the motor run when a ticket is inserted?
 - NO
 - 1. Is the chute cover closed?
 - 2. Check the safety switch located below the chute cover.
 - 3. Check the 2.25 A & 5 A fuses.
 - 4. Check the connection between the driver board and the motor.
 - 5. Check for dust on the front sensor.
 - 6. Check the position of the front sensor.
 - YES
Does the motor run at power up before inserting tickets?

1. Check the position of the front sensor.
2. Check the connection between the sensor board and the logic board.
3. Check the leads on the front sensor.
4. Check the drive transistor and LED for the front sensor.

Turn off the machine. Remove the cutter and guide assemblies, clean them, and replace.

Cutter Assembly checks:
1. Build up on the blade
2. Cutter tight on the flat of the shaft.
3. Gear tight on the shaft.
4. Paper stuck in the housing.
5. Stationary blade adjustment.
6. Proper seating of the cutter assembly in the guide housing assembly.

Guide Assembly checks:
1. Roller spring tension.
2. Roller spring screws tight.
3. The top guide “trailing finger” should be straight, not bent.
4. Paper stuck in guide track or entry block.

Did it count okay?

No count at all:
1. Check the holes-only / barcode setting.
2. Re-learn the barcode.

Miscount:
1. Clean dust off the sensors.
2. Check that the sensors hanging below the sensor board are not shoved off center.
3. Reposition the guide assembly.
4. Check the roller spring shape and tension (see mechanical drawings).

Print receipt okay?

Make sure paper is loaded properly. Note that thermal paper only prints on one side. It will be blank if loaded backwards.
SCALE SAMPLE OF CORRECT ROLLER SPRING SHAPE
AS REMOVED FROM ASSEMBLY

NOTE: REAR PINS (*) WILL LOCK WITH SIDE PLATE SPRINGS (**)

GUIDE ASSEMBLY

GUIDE HOUSING ASSEMBLY

CAUTION!

WHEN INSERTING GUIDE ASSEMBLY INTO GUIDE HOUSING ASSEMBLY, YOU MUST ALIGN THE TOP ROLLER SHAFTS IN THE APPROPRIATE SLOTS BEFORE PUSHING THE GUIDE ASSEMBLY DOWN AND FORWARD.

IMPROPER PROCEDURE MAY CAUSE DAMAGE TO THE ROLLER SPRINGS. REFERENCE THE MAINTENANCE TIPS AND TROUBLESHOOTING GUIDE.
Clamp Disks must be tight. Tighten one side at a time, then the other. Be sure the clamp disks are tight when both screws are tight. The motor shaft and drive shaft must be aligned properly when clutch is inserted.
Sensor Boards

NOTE: For HO-1000 Rev.4 OP2 = Position 1, OP3 = Position 2
For BCR-1000 Rev.3 OP1, Use Position 1 or 2
For Ticket guide assemblies with OVAL cutouts use Position 1 or 2.
For Ticket guide assemblies with ROUND cutouts use: Position 1 ONLY. (Middle Sensors Only)

IMPORTANT: For Sensor Replacement:

Scanner PCB’s BCR-1000 Rev. 2 & 3 and HO-1000 Rev. 4, have sensor “L” bracket mounting holes marked “A” (Marked on drawing only)
Use only when replacing middle or rear sensors.
Other sensors use PCB mounted “studs” to brace sensors.

When replacing sensors, note Rev.# on PCB. If mounting holes do not exist, remove brackets before mounting. (Insert sensors to same depth and direction as all others).

SENSOR PLACEMENT: Each scanner PCB has specific sensors in certain locations.

For HO-1000- All Revs. USE:
VTR16DI- (“V” shaped Lens) OP4 and OP5 ONLY (can be used in OP1)
QRBI114- (Flat Lens) OP1 and OP2-3 ONLY

For BCR-1000- All Revs. USE:
VTR16DI- (“V” shaped Lens) OP2, OP4 and OP5
QRBI114- (Flat Lens) Can be used in OP2 ONLY

NOTE: For BCR-1000 PCB, All Revs. OP1 is OTC680 ONLY
These drawings show configurations for BCR1000 sensor board revisions that can be configured to read barcoded or holes-only tickets. The top drawings are for revision V2R1; the bottom are for revisions V2R3 & V2R4. The drawings on the right show the jumper positions for barcoded tickets. Those on the left are for holes-only tickets. Holes-only operation is intended for emergency situations only. Note that the logic board options must also be changed to match the jumpers. Version 5 BCR1000 boards can not be configured as holes-only boards.
The Rev. 5 sensor boards have 6 LED’s and 5 sensors. There is an LED for each sensor, and an LED to indicate a cheating or an error condition. The front sensor detects the ticket to turn the motor on. The middle sensors work together to count the tickets and detect cheating. The rear sensors provide additional cheat detection.

<table>
<thead>
<tr>
<th>HO-1000</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSOR</td>
<td>LED</td>
<td>NOTES</td>
</tr>
<tr>
<td>Front</td>
<td>4</td>
<td>On when sees ticket</td>
</tr>
<tr>
<td>Middle Front</td>
<td>1</td>
<td>On when sees ticket</td>
</tr>
<tr>
<td>Middle Rear</td>
<td>6</td>
<td>On when sees ticket</td>
</tr>
<tr>
<td>Rear Left</td>
<td>3</td>
<td>On when sees ticket</td>
</tr>
<tr>
<td>Rear Right</td>
<td>2</td>
<td>On when sees ticket</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Flashes on for error or cheating</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BCR-1000</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSOR</td>
<td>LED</td>
<td>NOTES</td>
</tr>
<tr>
<td>Front</td>
<td>2</td>
<td>On when sees ticket</td>
</tr>
<tr>
<td>Middle Front</td>
<td>3</td>
<td>On and off as it sees ticket and barcode</td>
</tr>
<tr>
<td>Middle Rear</td>
<td>4</td>
<td>On when sees ticket</td>
</tr>
<tr>
<td>Rear Left</td>
<td>5</td>
<td>On when sees ticket</td>
</tr>
<tr>
<td>Rear Right</td>
<td>6</td>
<td>On when sees ticket</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Flashes on for error or cheating</td>
</tr>
</tbody>
</table>
Warranty Information

Deltronic Labs, Inc. will replace or repair any mechanical or electronic parts damaged as a result of component or circuit failure. We will also repair or replace defects in parts or assembly caused by normal operations.

Deltronic Labs, Inc. will not, however, be responsible for damage caused by or due to misuse of operation or power requirements, including system overloads or modification and burn out of electronic boards. Nor will Deltronic Labs, Inc. be responsible for visible damage or broken or missing parts caused by tampering with the units or unauthorized servicing.

Warranties are as follows:

- Electronic Components (boards, displays, power supplies, etc.) – One year warranty*.
- Mechanical Parts & Assemblies – 90 Day Warranty*.

*Please note that the warranty start date is the actual ship date.